Raman Spectroscopy



Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy

Mildred S. Dresselhaus, Ado Jorio, Mario Hofmann, Gene Dresselhaus and Riichiro Saito


Nano Lett., Article ASAP

Raman spectroscopy is here shown to provide a powerful tool to differentiate between two different sp2 carbon nanostructures (carbon nanotubes and graphene) which have many properties in common and others that differ. Emphasis is given to the richness of both carbon nanostructures as prototype examples of nanostructured materials. A glimpse toward future developments in this field is presented.

Read more....


Can Graphene be used as a Substrate for Raman Enhancement?

Xi Ling, Liming Xie, Yuan Fang, Hua Xu, Haoli Zhang, Jing Kong, Mildred S. Dresselhaus, Jin Zhang and Zhongfan Liu


Nano Lett., 2010, 10 (2), pp 553–561

Graphene is a monolayer of carbon atoms packed into a two-dimensional (2D) honeycomb crystal structure, which is a special material with many excellent properties. In the present study, we will discuss the possibility that graphene can be used as a substrate for enhancing Raman signals of adsorbed molecules. Here, phthalocyanine (Pc), rhodamine 6G (R6G), protoporphyin IX (PPP), and crystal violet (CV), which are popular molecules widely used as a Raman probe, are deposited equally on graphene and a SiO2/Si substrate using vacuum evaporation or solution soaking. By comparing the Raman signals of molecules on monolayer graphene and on a SiO2/Si substrate, we observed that the intensities of the Raman signals on monolayer graphene are much stronger than on a SiO2/Si substrate, indicating a clear Raman enhancement effect on the surface of monolayer graphene. For solution soaking, the Raman signals of the molecules are visible even though the concentration is low to 10?8 mol/L or less. What’s more interesting, the enhanced efficiencies are quite different on monolayer, few-layer, multilayer graphene, graphite, and highly ordered pyrolytic graphite (HOPG). The Raman signals of molecules on multilayer graphene are even weaker than on a SiO2/Si substrate, and the signals are even invisible on graphite and HOPG. Taking the Raman signals on the SiO2/Si substrate as a reference, Raman enhancement factors on the surface of monolayer graphene can be obtained using Raman intensity ratios. The Raman enhancement factors are quite different for different peaks, changing from 2 to 17. Furthermore, we found that the Raman enhancement factors can be distinguished through three classes that correspond to the symmetry of vibrations of the molecule. We attribute this enhancement to the charge transfer between graphene and the molecules, which result in a chemical enhancement. This is a new phenomenon for graphene that will expand the application of graphene to microanalysis and is good for studying the basic properties of both graphene and SERS.

Read more....